
Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

38

Process Networks: Build It Like Lego

3 Process Networks: Build It
Like Lego

We now progress to more complex networks

• using simple and easily understood processes to build larger networks
• the reuse of existing processes is demonstrated
• a timer is used to improve console readability
• introduces the concepts of ChannelInputLists and ChannelOutputLists

One of the main advantages of the CSP based approach we are using is that processes can be combined
using a simple compositional style. It is very much what you see is what you get!

In arithmetic the meaning of the composition 1 + 2 + 3 is immediately obvious and results in the answer 6.
The composition of processes is equally simple and obvious. Thus we can build a set of basic building
block processes, like Lego® bricks, from which we can construct larger systems, the meaning of which
will be obvious given our understanding of the basic processes.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

39

Process Networks: Build It Like Lego

All of the building block processes are to be found in the package org.jcsp.groovy.plugAndPlay.
A more detailed discussion of these processes is to be found in the accompanying documentation.

3.1 Prefix Process

The process diagram of GPrefix is given in Figure 3-1 and its definition is presented in Listing 3-1.
GPrefix initially outputs the prefixValue on its outChannel {17} and thereafter it writes everything
it reads on its inChannel {13} to its outChannel, using a non-terminating loop {18-19}.

GPrefix - prefixValue inChannel outChannel

Figure 3-1 GPrefix Process Diagram

The GPrefix process has an input channel inChannel and an output channel outChannel, which are
properties of the process {13, 14}. In addition, there is a property called prefixValue that has the initial
value 0 {12}, which can be changed when a process instance is created.

10 class GPrefix implements CSProcess {
11
12 def int prefixValue = 0
13 def ChannelInput inChannel
14 def ChannelOutput outChannel
15
16 void run () {
17 outChannel.write(prefixValue)
18 while (true) {
19 outChannel.write(inChannel.read())
20 }
21 }
22 }

Listing 3-1 GPrefix Process Definition

3.2 Successor Process

The process diagram for GSuccessor is shown in Figure 3-2 and it’s coding in Listing 3-2. The process
simply {17} reads in a value from its inChannel and then writes this value plus 1 to its outChannel.
It does this in a while loop that never terminates {16-17}.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

40

Process Networks: Build It Like Lego

GSuccessor

inChannel outChannel

Figure 3-2 GSuccessor Process Diagram

10 class GSuccessor implements CSProcess {
11
12 def ChannelInput inChannel
13 def ChannelOutput outChannel
14
15 void run () {
16 while (true) {
17 outChannel.write(inChannel.read() + 1)
18 }
19 }
20 }

Listing 3-2 GSuccessor Process Definition

3.3 Parallel Copy

The process diagram for GPCopy is given in Figure 3-3 and it’s coding in Listing 3-3. The process inputs
a value on its inChannel {12}, which it outputs to outChannel0 {13} and outChannel1 {14} in
parallel. This is repeated forever. By outputting to its output channels in parallel we are assured that it
does not matter the order in which these channels are read by other processes on their corresponding
input channels. We are also guaranteed that a read on its input channel will not take place until both the
outputs have completed because a parallel (PAR) does not terminate until all its constituent processes
have terminated.

outChannel0
GPCopy inChannel

outChannel1

Figure 3-3 Process Diagram of GPCopy

GPCopy utilises the process ProcessWrite from the package org.jcsp.plugNplay, demonstrating
that we can incorporate previously written Java processes into the Groovy environment. Two instances of
ProcessWrite are defined {17, 18} each accessing one of the output channels. A PAR of the two processes
is then defined {19} called parWrite2, which is not run at this time. An instance of ProcessWrite
has a publicly available field called value that is assigned the data to be written.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

41

Process Networks: Build It Like Lego

The non-terminating loop {20–25} firstly reads in a value from the inChannel {21}, the value of which
is assigned to the value fields of the two ProcessWrite instances, write0 {22}and write1 {23}. The
parallel parWrite2 is then run {24}, which causes the writing of the value read in from inChannel to
outChannel0 and outChannel1 in parallel, after which it terminates. ProcessWrite terminates as
soon as it has written a single value to its output channel. Once parWrite2 has terminated, processing
resumes at the start of the while loop {20}.

10 class GPCopy implements CSProcess {
11
12 def ChannelInput inChannel
13 def ChannelOutput outChannel0
14 def ChannelOutput outChannel1
15
16 void run () {
17 def write0 = new ProcessWrite (outChannel0)
18 def write1 = new ProcessWrite (outChannel1)
19 def parWrite2 = new PAR ([write0, write1])
20 while (true) {
21 def i = inChannel.read()
22 write0.value = i
23 write1.value = i
24 parWrite2.run()
25 }
26 }
27 }

Listing 3-3 GPCopy Process Definition

3.4 Generating a Sequence of Integers

The three processes, GPrefix, GSuccessor and GPCopy can be combined to form a network that outputs
a sequence of integers on outChannel as shown in Figure 3-4 and Listing 3-4.

Figure 3-4 Process Network Diagram to Generate a Stream of Integers (GNumbers)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

42

Process Networks: Build It Like Lego

The operation of the network proceeds as follows. Initially, only GPrefix can undertake any processing
which is to output its prefix value, 0. This is then input by GPCopy, which copies the value to both the
outChannel and the input of GSuccessor. GSuccessor then reads the input value, increments it
and then outputs it to GPrefix. GPrefix then copies the new input value to its output channel. Thus the
numbers circulate round the network incrementing by one each time.

The GNumbers process has a single output channel outChannel property {12} upon which the stream
of integers is output. Three internal channels a, b and c are defined {16–18} as one2one channels and
these are used to connect the processes together in a manner that directly reflects the process network
diagram, Figure 3-4. For example, the two output channels of GPCopy are assigned to the property
outChannel and b.out() while its input channel is assigned to a.in().

10 class GNumbers implements CSProcess {
11
12 def ChannelOutput outChannel
13
14 void run() {
15
16 def a = Channel.one2one()
17 def b = Channel.one2one()
18 def c = Channel.one2one()
19

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with your
dissertation?
Get in-depth feedback & advice from experts in your
topic area. Find out what you can do to improve
the quality of your dissertation!

http://bookboon.com/
http://bookboon.com/count/advert/93324fb6-34af-4083-97e3-a15f00b15c50

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

43

Process Networks: Build It Like Lego

20 def numbersList = [new GPrefix (prefixValue: 0,
21 inChannel: c.in(),
22 outChannel: a.out()),
23 new GPCopy (inChannel: a.in(),
24 outChannel0: outChannel,
25 outChannel1: b.out()),
26 new GSuccessor (inChannel: b.in(),
27 outChannel: c.out())
28]
29 new PAR (numbersList).run()
30 }
31 }

Listing 3-4 Definition of the GNumbers Process

The design process becomes one of creating a process network diagram and then using that to define
the required channels which are then used to connect the processes together. The system is able to
check, using the interface specifications, that an input end of a channel specified by the in() method is
connected to a ChannelInput. Similarly a ChannelOutput must be connected to a channel output
end specified by the out() method because we have specified the types of the channels in the properties
of the process class definitions.

3.5 Testing GNumbers

Figure 3-5 shows the process network that can be used to test the operation of the process GNumbers.
It is apparent that the easiest way of testing the process GNumbers is to print the stream of numbers to
the console window. For this purpose a GPrint process is provided. GPrint has a ChannelInput for
reading a stream of numbers from its inChannel property. It also has a property, heading, that is a
String, which contains a title for the printed stream. The corresponding script for the network shown
in Figure 3-5 is given in Listing 3-5.

Figure 3-5 Network to Test GNumbers

10 def N2P = Channel.one2one()

11
12 def testList = [new GNumbers (outChannel: N2P.out()),
13 new GPrint (inChannel: N2P.in(),
14 heading : "Numbers")
15]
16 new PAR (testList).run()

Listing 3-5 The Script to Test GNumbers

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

44

Process Networks: Build It Like Lego

A single channel is created {10} called N2P that is used to connect GNumbers to GPrint. The list of
processes is created {12–15} with the properties assigned to the input and output ends of N2P and the
heading property of GPrint is set to “Numbers”. A typical output is shown in Output 3-1. It is noted
that the user has to terminate the system by interrupting the console stream. The processes have been
constructed using never ending while-loops and thus run forever, unless otherwise terminated. In Eclipse
this is achieved by clicking the ‘Terminate’ button in the Console view.

Numbers

0

1

2

3

4

5

6

7

8

9

10

11

Output 3-1 Output from the Script Test GNumbers

3.6 Creating a Running Sum

We will now use the output from GNumbers as input to a process called GIntegrate that reads a stream
of integers and outputs the running sum of the numbers read so far, as another stream of numbers. In
order to do this we shall need a process that undertakes addition of numbers arriving in a stream of
such numbers. The GPlus process does this and its coding is shown in Listing 3-6.

10 class GPlus implements CSProcess {
11
12 def ChannelOutput outChannel
13 def ChannelInput inChannel0
14 def ChannelInput inChannel1
15
16 void run () {
17
18 ProcessRead read0 = new ProcessRead (inChannel0)
19 ProcessRead read1 = new ProcessRead (inChannel1)
20 def parRead2 = new PAR ([read0, read1])
21
22 while (true) {

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

45

Process Networks: Build It Like Lego

23 parRead2.run()
24 outChannel.write(read0.value + read1.value)
25 }
26 }
27 }

Listing 3-6 GPlus process coding

The GPlus process uses techniques similar to that used in GPCopy, except that we read from two input
channels in parallel using the process ProcessRead, which reads a single value from a channel and
then terminates. GPlus has two input channels, inChannel0 and inChannel1 {13, 14} and one output
channel, outChannel {12} upon which the sum of the two inputs are written. Two ProcessRead
processes are constructed called read0 {18} and read1 {19} and these are used to construct a PAR called
parRead2 {20}. It should be noted that {20} only defines the parallel parRead2, it does not cause it to
be run. The main loop of the process {22-25} initially invokes the parallel parRead2 {23}. This parallel
only terminates when both read0 and read1 have read a value and terminated. The values read are
obtained from a publicly available field, value, of a ProcessRead. The two values that have been read
are added together and then written to the output channel {24}.

Listing 3-7 gives the coding for the process GIntegrate and its associated process network diagram
is given in Figure 3-6. The coding can be seen to be a representation of the diagram in the same way as
previous transformations of diagrams into process network scripts.

By 2020, wind could provide one-tenth of our planet’s
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the
world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our
systems for on-line condition monitoring and automatic
lubrication. We help make it more economical to create
cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity,
industries can boost performance beyond expectations.

Therefore we need the best employees who can
meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

http://bookboon.com/
http://bookboon.com/count/advert/0d9efd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

46

Process Networks: Build It Like Lego

The operation of GIntegrate proceeds as follows. The process GPrefix can output its initial value, 0,
which forms one of the inputs to GPlus, using channel c. The other input from GPlus is read from
GIntegrate’s inChannel. The GPlus process and hence the GIntegrate process will now wait until
there is an input on the inChannel. Once this arrives the addition of the two values will take place
and the result written to the channel a, which forms the input to GPCopy. GCopy can now output the
current sum on the outChannel and also send a copy to GPrefix, using channel b, which immediately
outputs the value unaltered to the channel c. In this way the current running sum is circulated around
the network and is also output to a subsequent process.

Figure 3-6 Process Network Diagram of GIntegrate

10 class GIntegrate implements CSProcess {
11
12 def ChannelOutput outChannel
13 def ChannelInput inChannel
14
15 void run() {
16
17 def a = Channel.one2one()
18 def b = Channel.one2one()
19 def c = Channel.one2one()
20
21 def integrateList = [new GPrefix (prefixValue: 0,
22 outChannel: c.out(),
23 inChannel: b.in()),
24 new GPCopy (inChannel: a.in(),
25 outChannel0: outChannel,
26 outChannel1: b.out()),
27 new GPlus (inChannel0: inChannel,
28 inChannel1: c.in(),
29 outChannel: a.out())
30]
31 new PAR (integrateList).run()
32
33 }
34 }

Listing 3-7 GIntegrate Process Definition

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

47

Process Networks: Build It Like Lego

A process network to test the operation of GIntegrate, by outputting the current value of the running
sum is presented in Figure 3-7. GNumbers provides the input stream into GIntegrate using the channel
N2I and the output from GIntegrate is written, using the channel I2P, to the GPrint process which
writes the stream of numbers to the console.

The script that invokes this network is shown in Listing 3-8. The script is taken directly from the process
network diagram by connecting the output and input ends of each of the channels, N2I and I2P, to the
appropriate property of the processes.

Figure 3-7 The Process Network to Demonstrate the Operation of GIntegrate

10 def N2I = Channel.one2one()
11 def I2P = Channel.one2one()
12
13 def testList = [new GNumbers (outChannel: N2I.out()),
14 new GIntegrate (inChannel: N2I.in(),
15 outChannel: I2P.out()),
16 new GPrint (inChannel: I2P.in(),
17 heading: "Integrate")
18]
19
20 new PAR (testList).run()

Listing 3-8 Script that Implements the Network of Figure 3-7

Output 3-2 shows the console window after the network has been allowed to execute for a short period of
time. It can be seen by observation that each output is the sum of the numbers so far from the sequence
0, 1, 2, …. Later, we shall see how we can output all the intermediate values.

Integrate

0

1

3

6

10

15

21

28

36

45

Output 3-2 Running Sum Generated by the Sequence of Positive Integers

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

48

Process Networks: Build It Like Lego

3.7 Generating the Fibonacci Sequence

The Fibonacci sequence comprises; 0, 1, 1, 2, 3, 5, 8, 13, 21, …fn-2+fn-1, …. The first two numbers in the
sequence f0 and f1 have to be predefined and are typically set to 0 and 1 but could be any value. It can
be seen that we need to create the first two numbers in the sequence and we already have a process,
GPrefix that achieves this. We now need a process that will read two numbers, in sequence and then
output the sum of the pair of numbers. The next iteration will take the second number in the sequence
and pair it to the third number that is input, output their sum and so on.

3.7.1 Adding Pairs of Numbers

Listing 3-9 gives the definition of a process that inputs a stream of numbers and outputs another stream
which contains the sum of pairs of numbers. The process GStatePairs initially reads in two numbers
from the input stream, inChannel, {17, 18} then, within a loop outputs their sum {20} to outChannel,
assigns the second number to the first {21}and then reads another number n2 from inChannel {22}.

10 class GStatePairs implements CSProcess {
11
12 def ChannelOutput outChannel
13 def ChannelInput inChannel
14
15 void run() {

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

49

Process Networks: Build It Like Lego

16
17 def n1 = inChannel.read()
18 def n2 = inChannel.read()
19 while (true) {
20 outChannel.write (n1 + n2)
21 n1 = n2
22 n2 = inChannel.read()
23 }
24 }
25 }

Listing 3-9 Process GStatePairs

The process network diagram that implements the generation of the Fibonacci sequence is shown in
Figure 3-8 and its associated process definition is shown in Listing 3-10.

Initially, GPrefix-0 is the only process that can run because it is the only one that can undertake an output.
GPCopy is waiting for an input as is GStatePairs. GPrefix-1 is trying to output and will not be able
to, until GPrefix-0 reads from its input channel, which it will do once it has written the 0 to GPCopy.

Figure 3-8 Process Network Diagram to Generate the Fibonacci Sequence

It can be seen, by inspection, that the code given in Listing 3-10, directly implements the process network
diagram given in Figure 3-8. The four channels, a, b, c and d are defined {16–19}. The list of processes
is then created as testList {21–32} comprising four elements, one for each of the required processes.
The list of processes is then invoked using a PAR {33}.

10 class FibonacciV1 implements CSProcess {
11
12 def ChannelOutput outChannel
13
14 void run () {
15
16 def a = Channel.one2one()

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

50

Process Networks: Build It Like Lego

17 def b = Channel.one2one()
18 def c = Channel.one2one()
19 def d = Channel.one2one()
20
21 def testList = [new GPrefix (prefixValue: 0,
22 inChannel: d.in(),
23 outChannel: a.out()),
24 new GPrefix (prefixValue: 1,
25 inChannel: c.in(),
26 outChannel: d.out()),
27 new GPCopy (inChannel: a.in(),
28 outChannel0: b.out(),
29 outChannel1: outChannel),
30 new GStatePairs (inChannel: b.in(),
31 outChannel: c.out()),
32]
33 new PAR (testList).run()
34 }
35 }

Listing 3-10 Fibonacci Process Definition

Listing 3-11 shows the script by which the output from the Fibonacci system can be produced using the
previously defined GPrint process.

10 def F2P = Channel.one2one()
11
12 def testList = [new FibonacciV1 (outChannel: F2P.out()),
13 new GPrint (inChannel: F2P.in(),
14 heading: "Fibonacci V1")
15
16]
17 new PAR (testList).run()

Listing 3-11 The Script to Output the Fibonacci Sequence

The output from this script is shown in Output 3-3.

Fibonacci V1

0

1

1

2

3

5

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

51

Process Networks: Build It Like Lego

8

13

21

34

55

89

Output 3-3 Console Output from Script Generating the Fibonacci Sequence

There is, however, a problem with this solution because we now have a process definition for GStatePairs
(Listing 3-9) that contains some state (n1 and n2) that is retained between iterations of the process. All
the other process defined so far, contain no such state. We have also defined a process GStatePairs that
does addition within it and yet we have already defined a process GPlus (Listing 3-6) that undertakes
stateless addition. How can we build another process that enables us to reuse the GPlus process and
which yet can be used to create the effect of GStatePairs? This may seem a somewhat esoteric argument
but processes that contain state are much more difficult to modify should changes be required in future,
especially if it is desired to modfy their behaviour dynamically. This is discussed in the next section.

http://bookboon.com/
http://bookboon.com/count/advert/fba1fd82-96d7-e011-adca-22a08ed629e5

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

52

Process Networks: Build It Like Lego

3.7.2 Using GPlus to Create the Sum of Pairs of Numbers

In order to use GPlus we need two input streams comprising the numbers to be added together. We
can use GPCopy to copy the input stream, which would give us two identical streams. We however
require adding the current number to the previous one. Hence we require a process that removes the
first number from one of the streams and then just outputs what it inputs. If this process is inserted
into one of the streams coming from GPCopy then we will create that stream with the current number
and the other will, in fact contain the previous number. This is shown in Figure 3-9, where the process
GTail is introduced.

Figure 3-9 GPairs Process Network that Adds Pairs of Numbers using GPlus

The definition of GTail is shown in Listing 3-12. The first value sent to inChannel is read but not
retained {16}. Thereafter, values are read from inChannel and immediately written to outChannel
{14}. This formulation retains no state between iterations of the loop {17–18}.

10 class GTail implements CSProcess {
11
12 def ChannelOutput outChannel
13 def ChannelInput inChannel
14
15 void run () {
16 inChannel.read()
17 while (true) {
18 outChannel.write(inChannel.read())
19 }
20 }
21 }

Listing 3-12 Definition of GTail

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

53

Process Networks: Build It Like Lego

The operation of the network given in Figure 3-9 is as follows; the first number, 0, is read by GPCopy
and copied to channels a and b in parallel. GTail reads the 0 on channel b and ignores it! Meanwhile
the output on channel a is read by GPlus. GPCopy now reads the next number, 1, and attempts to copy
this to both channels a and b in parallel. That to channel b will be read by GTail and immediately
output to channel c to be read by GPlus, which can now do the addition and subsequent output of the
sum of 0 and 1. GPCopy is now able to write the copy of 1 to the channel a as GPlus is now ready to
read, in parallel. The system continues in this manner, with none of the processes retaining any state
and simply relying on the fact that processes input from and output to multiple channels in parallel and
that the order in which the communications takes places does not matter. The semantics of channel
communication ensure that no data is lost.

The coding of the stateless version of the process, GPairs, to add pairs of numbers from a stream is
shown in Listing 3-13 and follows the structure shown in Figure 3-9.

10 class GPairs implements CSProcess {
11
12 def ChannelOutput outChannel
13 def ChannelInput inChannel
14
15 void run() {
16
17 def a = Channel.one2one()
18 def b = Channel.one2one()
19 def c = Channel.one2one()
20
21 def pairsList = [new GPlus (outChannel: outChannel,
22 inChannel0: a.in(),
23 inChannel1: c.in()),
24 new GPCopy (inChannel: inChannel,
25 outChannel0: a.out(),
26 outChannel1: b.out()),
27 new GTail (inChannel: b.in(),
28 outChannel: c.out())
29]
30 new PAR (pairsList).run()
31 }
32 }

Listing 3-13 The GPairs Process Definition

The definition of the second version of the Fibonnaci process is the same as that given in Listing 3-10
with lines 28–29 replaced with the invocation of the constructor for GPairs instead of GStatePairs.
The execution of the second version is the same as that shown in Listing 3-11 with line 12 creating an
instance of the second version of the Fibonnaci process rather than the first. The output is identical
from both systems.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

54

Process Networks: Build It Like Lego

3.7.3 Lessons Learned

We should always try to reuse existing processes whenever possible and that often the best way of solving
a problem is to define another process rather than changing or extending an existing one. In other words,
if we try to keep each process as simple as possible and to compose systems from lots of small, easily
understood processes it will be easier to reason about the behaviour of the complete network.

3.8 Generating Squares of Numbers

In this example, we will reuse the processes we have created so far to create a sequence of squares of
numbers. The process network to achieve this is shown in Figure 3-10 and the corresponding Listing 3-14
gives the process definition. The process simply writes to it’s outChannel the squares of the numbers
starting with 1 upwards. It can be tested by connecting the outChannel to a GPrint process.

outChannel
GNumbers

I2P
GIntegrate

N2I
GPairs

Figure 3-10 The GSquares Process Network

EXPERIENCE THE POWER OF
FULL ENGAGEMENT…

 RUN FASTER.
 RUN LONGER..
 RUN EASIER…

READ MORE & PRE-ORDER TODAY
WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

http://bookboon.com/
http://bookboon.com/count/advert/bb104666-5119-403f-91c4-a3e7010cbfdf

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

55

Process Networks: Build It Like Lego

By inspection it can be seen that the GSquares process, Listing 3-14, does implement the network given
in Figure 3-10. However, what is not obvious is how this result is achieved. To try to understand this
we need to print the output from each stage of the squares process. For this we require a process that
prints a number of parallel inputs.

10 class GSquares implements CSProcess {
11
12 def ChannelOutput outChannel
13
14 void run () {
15
16 def N2I = Channel.one2one()
17 def I2P = Channel.one2one()
18
19 def testList = [new GNumbers (outChannel: N2I.out()),
20 new GIntegrate (inChannel: N2I.in(),
21 outChannel: I2P.out()),
22 new GPairs (inChannel: I2P.in(),
23 outChannel: outChannel),
24]
25 new PAR (testList).run()
26 }
27 }

Listing 3-14 GSquares Process Definition

3.9 Printing in Parallel

There are many occasions in which we wish to print output from a set of parallel processes so that the
output correlates the state of each process at a consistent point in their execution. The GParPrint
process achieves this by reading a number of inputs in parallel and then printing out each in a tabular
manner one set of inputs to a line of text. Its coding is shown in Listing 3-15.

10 class GParPrint implements CSProcess {
11
12 def ChannelInputList inChannels
13 def List<String> headings
14 def long delay = 200
15
16 void run() {
17 def inSize = inChannels.size()
18 def readerList = []
19 (0 ..< inSize).each { i ->
20 readerList [i] = new ProcessRead (inChannels[i])
21 }
22

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

56

Process Networks: Build It Like Lego

23 def parRead = new PAR (readerList)
24
25 if (headings == null) {
26 println "No headings provided"
27 }
28 else {
29 headings.each { print "\t$it" }
30 println ()
31 }
32
33 def timer = new CSTimer()
34 while (true) {
35 parRead.run()
36 readerList.each { pr -> print "\t" + pr.value.toString() }
37 println ()
38 if (delay > 0) timer.sleep (delay)
39 }
40 }
41 }

Listing 3-15 The GParPrint Process Defintion

The property inChannels {12} is of type ChannelInputList, which comprises a list of input channel
ends. A ChannelInputList is provided as one of the Groovy helper classes in the package org.jcsp.
groovy. It makes for easier processing of collections of channels. There is a similar object for output
channel ends called ChannelOutputList. The property headings {13} is a List of the same size as
inChannels, though this is not checked, of the title to be placed at the top of each column of printed
numbers. The property delay {14} is used to introduce a time delay between each line of printed output
to make it easier to read as the output appears. The delay has a default value of 200 milliseconds and
is of type long because the system clock returns times in that format. The default value will be used if
the property is not assigned a new value when the process is constructed.

The number of inChannels in the ChannelInputList is obtained by applying the size() {17}
method. The variable readerList is defined {18} as an empty list and will be used to build the list of
ProcessRead processes that will be used to read from each of the inChannels in parallel. The closure
{19–21} iterates over each element in the range 0 to inSize-1 and constructs a ProcessRead process
accessing the i’th element of inChannels and allocating the instance to the corresponding element of
readerList {18}. A parallel is then constructed, parRead, using PAR, from readerList {23}. The
collection of processes is not executed at this time.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

57

Process Networks: Build It Like Lego

The heading for each column of output is now created {25–31}. If the value of headings is null {25}
then a message indicating that no headings was provided is output {26}. Otherwise a heading is written,
tab separated (\t) using the elements of the List headings by a closure that iterates {29} over the
elements of headings, using the each iterator method. The name it refers to the value returned by
the iterator. It is assumed but not checked that the number of elements in headings is the same as that
in inChannels.

A timer is now defined {33} of type CSTimer (see Chapter 9) that will be used to create the delay between
each line of output. The main loop of the process can now commence {34–39}. The first requirement is
to read the input values in parallel by executing parRead {35}. Once all the values have been read on all
the input channels, in any order, then we can print the values to the console window. This is achieved by
the use of a closure that iterates over each of the elements in readerList {36}. It is assumed that any
object printed by this process will have the method toString() defined. The variable pr is assigned,
in turn, to each list element from which we extract the value field that can then be printed. If the value
of delay is greater than zero then the sleep method is called on timer, which causes this process to
stop execution, idle, for at least delay milliseconds {38}.

http://bookboon.com/
http://bookboon.com/count/advert/4190a6d8-133a-4700-b7de-9ffa01018ca9

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

58

Process Networks: Build It Like Lego

We can now use this process to print out all the intermediate values in the process network shown in
Figure 3-10. This is simply achieved by inserting GPCopy processes into each connecting channel and
sending one output to the next process and the other into the GParPrint process as shown in Figure
3-11. Arrays of channels are used to make naming easier as shown in Listing 3-16. The channels connect
form links between the processes as a long chain or pipeline. The channels outChans provide the
connection between the intermediate GPCopy processes and the final process to the GParPrint process.

The output from GNumbers is sent via connect[0] to the first instance of GPCopy which outputs
the value in parallel to connect[1] and outChans[0]. Channel connect[1] then forms the input
to GIntegrate, the output from which is communicated on connect[2] to the second instance of
GPCopy. Channel connect[3] then sends the data stream to an instance of GPairs, the output of which
is sent via connect[4] to an instance of GPrefix, which then finally sends the stream to outChans[2].
The GPrefix process has been inserted so that the tabular output is formatted correctly with a first line of
zeros. Recall that GPairs consumes the first pair of numbers and only outputs a single number; hence
we need to insert another number, 0, to form the tabular output correctly.

Figure 3-11 The Squares Network with Additional Printing

The arrays of channels are defined using a channel array constructor as shown in {10–11}, Listing 3-16.
The lists of inputs to GParPrint are created by means of the constructor for ChannelInputList,
which takes a parameter of an array of channels and returns a list of channel input ends {13}. The list of
Strings that make the titles of the columns is then defined {15}. The list of processes as shown in
Figure 3-11 is then created connecting all the processes together {17–33}. Finally, the list of processes is
invoked {35} and produces the output shown in Output 3-4.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

59

Process Networks: Build It Like Lego

10 def connect = Channel.one2oneArray(5)
11 def outChans = Channel.one2oneArray(3)
12
13 def printList = new ChannelInputList (outChans)
14
15 def titles = ["n", "int", "sqr"]
16
17 def testList = [new GNumbers (outChannel: connect[0].out()),
18 new GPCopy (inChannel: connect[0].in(),
19 outChannel0: connect[1].out(),
20 outChannel1: outChans[0].out()),
21 new GIntegrate (inChannel: connect[1].in(),
22 outChannel: connect[2].out()),
23 new GPCopy (inChannel: connect[2].in(),
24 outChannel0: connect[3].out(),
25 outChannel1: outChans[1].out()),
26 new GPairs (inChannel: connect[3].in(),
27 outChannel: connect[4].out()),
28 new GPrefix (prefixValue: 0,
29 inChannel: connect[4].in(),
30 outChannel: outChans[2].out()),
31 new GParPrint (inChannels: printList,
32 headings: titles)
33]
34
35 new PAR (testList).run()

Listing 3-16 Script to Invoke the Process Network Shown in Figure 3-11

 n int sqr
 0 0 0
 1 1 1
 2 3 4
 3 6 9
 4 10 16
 5 15 25
 6 21 36
 7 28 49
 8 36 64
 9 45 81
 10 55 100
 11 66 121
 12 78 144
 13 91 169
 14 105 196
 15 120 225
 16 136 256

Output 3-4 Table of Numbers Showing Intermediate Stages in the Calculation of Squares

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

60

Process Networks: Build It Like Lego

Consideration of the output shows that the numbers do appear in sequence in the column headed “n”.
The column headed “int” does contain the running sum or integration of the numbers. If we ignore
the zero appearing in the first row of the column of squares headed “sqr”, which was generated by the
GPrefix process, then we see that there is indeed a list of the squares of the numbers in the first column.

3.10 Summary

We are now able to see why we can assert that this style of parallel processing has a compositional
semantics. We know that each process is correct in its own right. By using them together, in a composition,
we can go from a statement of what is required; generate a 0, generate a 1, then add the sequence up in
pairs to a network that directly implements the requirement. We have also reused previously defined
processes. This reuse and compositional capability means the system designer simply has to understand
the operation of each of the processes in terms of the use of a process’ input and output channels, so they
can be correctly connected to each other. The designer does not have to refer to other object definitions to
understand the behaviour of a process. It is for this reason that the types of channels have been specified
for class properties even though Groovy does not specifically require this to be done. In this simple case
we have not specified the nature of the object that is communicated over the channels, as they are all of
type Integer. In more complex systems the objects to be communicated should be documented as well.

Of more importance, is we have reused a number of processes, in relatively simple networks, to create
a number of interesting results. We have also learnt that it is better to reuse existing processes wherever
possible, rather than writing new processes, even if this means that we have to write another process.
Parallel processing is not just a means of executing systems over a number of processors it also allows
us to design systems more easily by composing existing processes into larger systems.

3.11 Exercises

Exercise 3-1

Write a process that undoes the effect of GIntegrate. This can be achieved in two ways, first,
by writing a Minus process that subtracts pairs of numbers read in parallel similar to GPlus
or by implementing a Negator process and inserting it before a GPlus process. Implement
both approaches and test them. Which is the more pleasing solution? Why?

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

61

Process Networks: Build It Like Lego

Exercise 3-2

Write a sequential version of GPCopy, called GSCopy that has the same properties as GPCopy.
Make a copy of Listing 3-13 replacing GPCopy by your GSCopy and call it GSPairsA.
Create another version, called GSPairsB in which the output channels outChannel0
and outChannel1 are assigned to the other actual channel, that is a.out() is assigned to
outChannel1 and b.out() is assigned to outChannel1. Take Listing 3-14 as the basis
and replace GPairs by GSPairsA or GSPairsB and determine the effect of the change. Why
does this happen? The accompanying web site contains the basis for this exercise apart from
the body of GSCopy. Hint: read Section 3.7.2 that describes the operation of GTail.

Exercise 3-3

Why was it considered easier to build GParPrint as a new process rather than using multiple
instances of GPrint to output the table of results?

Exercise 3-4

A ChannelInputList has a read() method that inputs from each channel in the channel
list in parallel and returns a list, the same size as the ChannelInputList containing the
object that has been read from each channel in the ChannelInputList. Modify the coding
of Listing 3-15 to make use of this capability.

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

